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Multithreaded Programs�
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Abstract

Hardware performance counters are CPU registers that
count data loads and stores, cache misses, and other events.
Counter data can help programmers understand software
performance. Although CPUs typically have multiple coun-
ters, each can monitor only one type of event at a time, and
some counters can monitor only certain events. Therefore,
some CPUs cannot concurrently monitor interesting combi-
nations of events. Software multiplexing partly overcomes
this limitation by using time sharing to monitor multiple
events on one counter. However, counter multiplexing is
harder to implement for multithreaded programs than for
single-threaded ones because of certain difficulties in man-
aging the length of the time slices.

This paper describes a software library called MPX that
overcomes these difficulties. MPX allows applications to
gather hardware counter data concurrently for any combi-
nation of countable events. MPX data are typically within a
few percent of counts recorded without multiplexing.

1 Introduction

For many years, CPUs have included registers that count
various hardware events while code executes. Counted
events typically include load and store requests, misses in
Level 1 and Level 2 (L1 and L2) cache and in the trans-
lation lookaside buffer (TLB), floating-point instructions
completed, and so on. The counters were intended to help
the designers of the hardware and low-level software eval-
uate their systems, and their programming interfaces were
not available to general users. However, since counter data
can help application programmers tune their codes, hard-
ware vendors have begun to publish the interfaces. Each
vendor uses a different programming interface, and differ-
ent CPU types (even from the same vendor) may count dif-

�Appears in Proceedings of 2001 International Parallel and Dis-
tributed Processing Symposium, Copyright c� 2001 IEEE.

ferent types of events. At least two projects have developed
uniform interfaces through which applications can access
counters on different operating systems [1, 5, 6].

Many useful measures of application performance in-
volve combinations of events. Cache utilization, for exam-
ple, is the fraction of load requests that are satisfied from
the cache. Unfortunately, some CPUs cannot count loads
and cache hits (or misses) at the same time. Although
most CPUs have multiple counters, different counters are
designed to monitor different types of events. A single
counter can monitor only one of type of event at a time,
so two events that the hardware design has assigned to the
same register cannot normally be counted simultaneously;
these events are said to be “conflicting.” In the PowerPC
604e architecture, for example, loads and L1 cache misses
are conflicting events [4]. Even if all registers could count
every type of event, a user might want to count more events
concurrently than there are counter registers.

Time sharing (multiplexing) can solve these problems.
One register counts different event types during separate
time slices, and the multiplexing software can estimate how
many times each type of event occurred if it can determine
how long the counter spent monitoring each event type as
a ratio of the total measurement period. One of the two
main contributions of this paper is a technique for determin-
ing this ratio accurately under a wide range of measurement
conditions, as described in Section 4.

Simple multiplexing algorithms produce adequate re-
sults when they measure one range of code at a time, but
they don’t work well for overlapping measurements. In
multithreaded codes, for example, the user may wish to
monitor the performance of several threads (running on
the same or different CPUs) as they execute concurrently.
Users may also wish to measure overlapping regions of
code within a single thread. The second main contribu-
tion of this paper is a set of techniques for using counter
multiplexing in multithreaded codes and other overlapped
measurements. Section 3 briefly describes how applications
initiate overlapped measurements, and Section 5 describes
software that implements them.



These multiplexing and overlapping techniques are im-
plemented in a library called MPX, which has been tested
on an IBM RS6000/SP computer with SMP nodes that each
contain four PowerPC 604e CPUs. The nodes run IBM’s
AIX 4.3 operating system. However, the techniques are not
specific to a particular processor or operating system. MPX
is implemented on top of PAPI [5, 6], a system-independent
interface for hardware performance counters. Section 6
compares the accuracy of MPX counts with nonmultiplexed
counts gathered using PAPI.

2 Background and related work

Several hardware vendors publish interfaces to their sys-
tems’ CPU performance counters. Examples include SGI’s
Perfex [7] and IBM’s Performance Monitor API [3]. Com-
paq’s ProfileMe [2] tool takes a different approach; it sam-
ples instructions as a code executes and determines what
hardware events each of these instructions caused.

Some CPUs and operating systems can measure com-
binations of events concurrently without special software.
Pentiums can count most events in any counter register,
although multiplexing would still increase the number of
events that can be counted concurrently. SGI’s IRIX has
built-in counter multiplexing: the system can switch the
event that each register is counting every 10 milliseconds.
It computes the total number of events of a given type by
multiplying the observed count for an event type by number
of event types that were multiplexed.

Each vendor interface reflects the unique capabilities of
the hardware and operating system. Since many applica-
tions can run on multiple platforms, users of proprietary
counter interfaces cannot develop portable instrumentation.
Multiplatform interfaces, such as PCL and PAPI, can mask
some of the differences between platforms.

The PCL [1] (Performance Counter Library) project is
based at the Forschungszentrum Jülich (a German national
research center). It defines a simple interface for perfor-
mance counters on Alpha, MIPS, Pentium, PowerPC, and
UltraSPARC processors. It allows nested measurements on
overlapping regions of code, but it does not explicitly sup-
port multithreading or multiplexing.

The PAPI [5, 6] (Performance Application Programming
Interface) project is based at the University of Tennessee,
Knoxville. It supports the same processor families as PCL.
PAPI allows measurements on overlapping regions, and it
also works with threaded code, if there is thread support in
the underlying hardware counter interface. PAPI was de-
signed to accommodate multiplexing, but this feature was
not in the initial implementation; indeed, the techniques de-
scribed in this paper may become the basis for multiplexing
in PAPI. At present, however, MPX is built on top of PAPI
and uses only its standard interfaces.

Although multiplatform interfaces attempt to hide sys-
tem dependences, they still work somewhat differently on
each machine because of underlying hardware differences.
Some event types may be countable on some systems but
not on others, and corresponding events can have different
meanings on different machines. For example, one system
might count a floating-point multiply-add instruction as a
single floating point operation while another counts it as
two. Therefore, performance data gathered on different ma-
chines is not generally comparable.

3 Event sets

MPX both uses and imitates the PAPI programming in-
terface. The two systems define an event set structure,
which lists hardware events to be counted together. PAPI
and MPX implement event sets differently, so these data
structures cannot be used interchangeably between them,
but the basic ideas are the same for both systems. A pro-
gram defines an event set by calling a constructor function
with a list of events. Programs initiate measurements by
passing an event set to a start function, and counting can
proceed on multiple event sets at the same time. In PAPI,
though, counter conflicts limit which sets can run together.
MPX removes this restriction.

In both systems, a program can read or reset counters
for any running event set. Programs can specify options
for event sets that define certain measurement characteris-
tics, such as whether events that occur in kernel mode are
counted. These features are only partly implemented in
both PAPI and MPX. Both are thread-safe and can count
events separately for different threads. At present, they can-
not define process-wide event sets that count all events in all
threads. Although MPX mimics the major functionality of
PAPI, it does not include corresponding functions for every
function in the PAPI library.

4 Multiplexing

Counter multiplexing involves sharing a single counter
among several event measurements over a time period � .
(� and other times may be measured either in seconds or
in processor cycles.) During this time, the counter will be
programmed to measure different event types in sequence.
Each event type, �, will be measured during a series of time
slices. The duration of the �

th slice for event � is ����, and
���� can vary with �. At the end of each slice, the num-
ber of events counted is added to a cumulative total for �,
and the counter will begin counting a new event during the
next time slice. For each event type, the user would like to
know ��, the number of times � occurred during � . If a
counter is multiplexed, an exact value for �� is not avail-
able, since some occurrences of � will happen when the



counter is recording other event types. However, if � oc-
curs at a reasonably constant rate during � , then �� can be
estimated as follows: Let �� be the actual count of � accu-
mulated over � and let �� �

�
� ����; that is, �� is the total

time events of type � were counted. Then

�� � ��

�

��

�

Counting �� is easy, but computing �� and � can be more
difficult, as the following discussion will show.

MPX triggers the switching of counters from one event
type to the next using the Unix interval timer and signal han-
dling features. At the beginning of a measurement, MPX
calls setitimer to deliver a signal after a specified inter-
val (10 milliseconds by default). The ITIMER VIRTUAL
flag is set, causing the timer to count time only when the
process that initiated it is running.

One event type, ��, is chosen from the user’s event set,
and a hardware counter is programmed to monitor � �. The
application then proceeds with its computation. When the
timer expires, Unix invokes the signal handler. The han-
dler halts counting of ��, stores the current count, and starts
counting ��. The timer automatically resets itself. When
the last event in the set has been counted, �� is scheduled
again, and this sequence continues until the measurement
period ends.

An early implementation of MPX computed �� and �

by counting the number of times, ��, that each event � was
scheduled to be counted. For each �, it computed � � �
���, where � is equal to the fixed timer interval. It then
computed � �

�
� ��. In the final computation of ��, �

appears in both the numerator and the denominator, so its
actual value cancels out. The software also made a small
correction to account for the partial time slice at the end of
a measurement period.

This approach produced acceptable results for simple
measurements, but it does not work for measurements in
threaded programs. The problem is that many systems have
one virtual timer per process, not one per thread. Moreover,
the signal generated when the timer expires can be deliv-
ered to any thread. These systems have no way to set up
separate timers for separate threads. As the next section
will show, one signal handler can serve all the threads in a
process, but the value of � will vary. Although the timer ex-
pires at fixed intervals from the perspective of the process
as a whole, multiple threads running on one CPU will have
their handlers invoked at unpredictable intervals. The prob-
lem is less severe when each thread runs on a different CPU,
but variations in the time slice for each thread can still arise
from the technique MPX uses to schedule the counters in
multiple threads.

To compute �� accurately, the software must measure
���� separately for each time slice of each event measure-

ment. MPX does this by counting processor cycles simulta-
neously with each event. This solution assumes that pro-
cessors have two or more event counters, and that every
counter can measure cycles. An informal survey of current
CPUs suggests that these assumptions are valid. Therefore,
no matter what event is chosen to run during a given time
slice, MPX can always count cycles simultaneously in an-
other counter. Each time the signal handler initiates a dif-
ferent event type measurement, it updates both �� and a
running count of ��. It also maintains a running count of
� . With this information, the software can easily compute
an estimate of �� either after a measurement is complete or
while it is still running.

MPX counts only one event type (other than cycles) at a
time. An alternative approach would be to schedule mul-
tiple nonconflicting event measurements on the available
counters during each time slice. Since some event types
could then be measured more often, �� would increase for
those event types and possibly produce more accurate esti-
mates of ��. However, an algorithm for selecting compat-
ible combinations of active event types would need to bal-
ance the goal of maximizing counter usage against the need
to schedule each event type often enough to produce useful
data. Such an algorithm would either need to run at every
time slice, or else a fixed schedule of counter usage would
have to be computed every time an event set was started or
stopped. The potential increase in accuracy to be gained
from this design does not appear to justify the added com-
plexity, since, as Section 6 notes, the accuracy is already
quite good in most cases.

5 Overlapping measurements

Some measurement tasks require counter measurement
periods to overlap. Figure 1 shows three types of over-
lapping measurements: partial overlap, nesting, and multi-
threading. Partial overlap occurs when an application initi-
ates two or more separate measurements, and one measure-
ment period begins before a preceding period has ended.
Nesting occurs when one measurement period occurs com-
pletely within another measurement period. Multithreaded
overlap occurs when two or more threads carry out mea-
surements (on the same or different regions of code) con-
currently. Individual threads may be scheduled to run on
the same or different CPUs, and the software must work cor-
rectly and accurately in either case. However, the results of
some measurements may well be different in the two cases
because threads running in parallel may interact with each
other differently from threads scheduled sequentially on the
same CPU.

All three cases require a level of abstraction, above the
basic hardware, that permits multiple concurrent measure-
ments to use the same counter registers. PAPI and some



Partial overlap

StartCounter(EventSet 1);
(code)
StartCounter(EventSet 2);
(code)
StopCounter(EventSet 1);
(code)
StopCounter(EventSet 2);

Nested

StartCounter(EventSet 1);
(code)
StartCounter(EventSet 2);
(code)
StopCounter(EventSet 2);
(code)
StopCounter(EventSet 1);

Multithreaded
Thread 1

StartCounter(EventSet 1);
(code)
StopCounter(EventSet 1);

Thread 2

StartCounter(EventSet 2);
(code)
StopCounter(EventSet 2);

Figure 1. Three types of overlapped counter measurements.

vendor-specific libraries provide this abstraction. In PAPI,
each event set may contain one or more events, up to the to-
tal number of counters available on the CPU. Several event
sets can be defined and run in overlapping regions of code,
as long as they contain no conflicting events.

Overlapping measurements present two further chal-
lenges when the counter library supports multiplexing:

� Each thread must correctly execute the scheduling al-
gorithm that shares the counter registers among the
event types being measured.

� The multiplexing library must attribute cycles and
events measured during a time slice to multiple event
sets.

5.1 Multithreading

MPX has been implemented on an IBM RS6000/SP with
four CPUs per node. The system runs AIX 4.3, which has
per-process (rather than per-thread) timers and signal han-
dling. Therefore, one timer must serve all the threads in the
process.

MPX maintains a list of the threads for which the appli-
cation has requested counter measurements (called “count-
ing threads”). When the timer expires and triggers a
signal, the handler may run in any one of the process’s
threads. This “timer handling thread” might not be a count-
ing thread, and it might not even be running user code. The
handler function will traverse the list of counting threads
and send a SIGVTALRM signal to each one (except itself)
using the pthread kill function. (Despite its name,
pthread kill can send any kind of signal, not just

SIGKILL.) The handler will also increment a global counter
of threads that should respond to these signals (Figure 2).
The timer handling thread will then execute the rest of the
handler code, as described below. Each counting thread re-
ceiving a signal will activate the same signal handler that
the timer handling thread used. However, unlike the timer
handling thread, these “receiving threads” must not reissue
the signal, or they would create an endless chain of signals.
Instead, they examine the global counter; if it is nonzero, a
thread will know that it is a receiving thread rather than a
timer handling thread. It will decrement the global counter
and execute the rest of the handler code. The counter will
reach zero when the last receiving thread decrements the
global counter. When the timer expires again, the thread
responding to the signal will recognize that it is the timer
handling thread.

The timer automatically resets itself to deliver another
signal after the specified interval has expired again. Po-
tentially, this could happen before all the threads had re-
sponded to the previous signal. If the thread arbitrarily cho-
sen by the operating system to handle the signal already has
a pending signal from a pthread kill call, the new sig-
nal will simply be dropped. If the chosen thread does not
have a pending signal, it will invoke its handler and behave
as a receiving thread. The global counter will be decre-
mented an extra time in that case, and the last receiving
thread to handle its signal will find the global counter has
reached zero. It will therefore behave as a timer handling
thread and reinitiate the distribution of signals. If timer sig-
nals continue to arrive faster than the handlers can operate,
the handlers will run correctly, but the program won’t get
much work done. This situation is unlikely to arise in prac-



static int threads responding = 0
lock( counting thread list lock )
if( threads responding == 0 ) � // timer-handling thread

for each counting thread t other than this thread �
++threads responding
pthread kill( t, SIGVTALRM ) // signal thread t

�
� else --threads responding // receiving thread

unlock( counting thread list lock )

if( this thread is counting ) �
// Code for recording event and cycle counts
// and switching the current event goes here.

�

Figure 2. Pseudocode for managing timer signals in a multithreaded program.

tice because, as Section 6 shows, the timer interval is typi-
cally much larger than the running time of the handler.

In an alternative implementation, the handlers were pro-
grammed to restart the timer only after the last receiving
thread had finished executing its handler. However, in some
cases signals were dropped, causing the handlers to cease
operating entirely.

5.2 Managing overlap

MPX uses the PAPI infrastructure, which can already
handle overlapping measurements. However, handling
overlap for multiplexed counters requires additional effort.

In PAPI, if a program starts an event set when another
set is already running, PAPI notes which individual events
appear in both sets and records their current counts. Each
event in the new set that is not already running is assigned
to a counter, provided there are no conflicts. If a conflict
is found, PAPI returns an error code instead of starting the
new set.

MPX uses a “master event list” to manage overlap. This
list includes all the events that appear in the MPX event sets
created by a particular thread. Each distinct event appears
only once in the list, and MPX permits an event set to be
used only by the thread that created it. The list maintains
a cumulative count of �� and �� (the observed count and
event measurement time) for each event. Each event also
carries a reference count, which indicates how many dif-
ferent MPX event sets use that event, and an “activation”
count that indicates how many of these event sets are cur-
rently running. An activation count greater than zero makes
an event eligible to be scheduled. Each thread has no more
than one event designated as the “current event;” this is the
event type that the hardware is actually counting at a given

moment (along with cycles). If no event set for a thread is
active, then there is no current event.

When an MPX event set is started, the activation count
for each of its events is incremented, and if there is no cur-
rent event, one is chosen from this set. MPX also records
the current values of�� and �� for each event in the set. For
events that are not already active, these values will be zero.

When the handler for a thread executes, it first deter-
mines whether to send any additional signals, as described
in Section 5.1. Then it stops the current event (if any) for
that thread, adds the counter value and the cycle count to
�� and ��, and selects the next active event from the mas-
ter list. The hardware is programmed to begin counting this
new current event. MPX relies on the underlying counter
software to gather thread-specific counter data.

When an MPX event set is stopped or read, the software
reads the current stored values of �� and �� for each event
and subtracts the initial values recorded earlier to compute
�� and �� for the period during which the event set was
running. The software also determines whether the thread’s
current event is among the events in the set being read. If so,
the counter and cycle count for that event are read and added
to the running total. (A similar correction for the current
event is applied when an event set is started.) Each event
set also measures � (the total duration of the measurement
period) while it is running, and with this information MPX
can estimate ��, the total event count, for each event type
as described earlier.

When an MPX event set is destroyed, the reference
counts for the corresponding events in the master list are
decremented, and any event type whose reference count
reaches zero is removed from the master list.



6 Performance

This section describes the accuracy and the overhead of
the MPX measurements.

The default time slice 	 for multiplexing is 10 millisec-
onds. (In the version of AIX used for these tests, non-
privileged users cannot set shorter timer intervals.) How-
ever, there is no guarantee that the actual interval for each
counter measurement will be close to this value because of
the scheduling complexities described in Section 4. The
length of a time slice limits the granularity of measure-
ment for MPX. If the measurement period � is less than the
time slice, only the first event type scheduled will be mea-
sured; other event types will not be counted. In general, for
event sets that contain 
 event types, measurement periods
of � � 	�
� �� will not produce data for some events.

Figure 3 shows the accuracy of the multiplexed measure-
ments compared to the nonmultiplexed measurements for
four event types. These measurements were taken as fol-
lows: a series of loops performing floating-point multipli-
cation and addition were run for specified numbers of iter-
ations, ranging from ��� to ��� by whole powers of two.
For a 10 millisecond time slice on the 332 MHz test sys-
tem, 	 � �� ms � ��� MHz � ���� � ��� cycles. For
four multiplexed events, 
 � �, so a measurement period of
� � 	
 � ���� million cycles will produce complete data.
The cycle counts for the ���-iteration loops ranged from 5.3
million to 8.6 million, so tests on loops of this size produced
valid data for only some of the events; the rest were reported
as zero. The computations used data stored in large arrays,
and three separate loops types were executed: one was tiled
to maximize L1 cache utilization, one was untiled, and one
used random indirect array references to minimize cache
reuse. For each loop, the test program counted total cy-
cles, L1 data cache misses, total floating point operations
(FLOPs), and number of load requests. First, MPX mea-
sured all these events concurrently, and then the tests were
repeated with PAPI measuring each event type separately.
For the indirect addressing measurements, the test software
used the same sequence of indirect array references for both
the MPX and the PAPI measurements. The graphs show the
ratio of the values measured using MPX to the correspond-
ing values measured using PAPI alone. Although there are
a few outliers, especially for lower numbers of events and
for multithreaded measurements, the MPX measurements
were usually within 5% of the PAPI numbers. Frequently,
the results agreed within 1%.

The most significant inaccuracies appeared in the L1
cache miss measurements for the tiled loops. MPX over-
estimated the counts by up to 70%. These errors are prob-
ably due to cache pollution by the MPX handler software.
Each time the handler runs, it evicts some data from the L1
cache. When the handler returns, the computation loop in-

curs numerous cache misses that would not have occurred
if the handler had not run. Of course, these cache misses
also occur for the untiled and indirect addressing loops, but
the latter two loops would have incurred cache misses any-
way because they are not tuned for good cache utilization.
Therefore, the number of excess misses due to cache pollu-
tion by the handler is much greater for the tiled loops. The
exact number of excess cache misses varies widely, but typ-
ical values are in the range of a few thousand per execution
of the handler for the tiled loops and few hundred for the
other loops. The number of excess cache misses grows for
the tiled loops with longer runs because each execution of
the handler causes a new set of cache misses, whereas with-
out the intrusion of the handler, the tiled loop would nor-
mally incurs many misses initially as it brought data into the
cache, but then it would reach a steady state with far fewer
misses. Inaccurate cache miss measurements for computa-
tions with highly tuned cache usage is the main drawback
of the MPX multiplexing software.

For the multithreaded tests, multiplexing was somewhat
less accurate than for single threading, but still generally
quite good (Figure 4). The cycle count data appears to show
significant inaccuracy for all measurement types, but this
data is misleading. For the multithreaded tests, the actual
run times of the tests do vary somewhat. Since the MPX
and PAPI cycle counts are for different runs, the disagree-
ment between the two is due to actual differences in run
time, not inaccurate measurement. In fact, the cycle count
data for MPX is very accurate because MPX counts cycles
continually in one of the registers. Any differences between
MPX and PAPI should be due only to the overhead of the
MPX software (discussed at the end of this section). Sepa-
rate tests were conducted in which the cycle count was mea-
sured using PAPI and MPX simultaneously during an MPX
multiplexed measurement. (This was possible because the
PowerPC 604e can monitor cycles in any of its four coun-
ters; MPX used two of these registers at a time, and PAPI
used one of the others.) In these tests, the PAPI and MPX
cycle counts agreed within 1%.

The main overhead of the MPX software is in the handler
that responds when the timer expires. For single-threaded
programs, this handler executed in about 160 microseconds
on the test system, and varying the number of events multi-
plexed didn’t change this time significantly. (With no events
being counted, the overhead dropped to 50 microseconds
or less.) For programs with four threads on a four-CPU
node, the handler overhead varied from about 170 to 215
microseconds. These numbers do not include the overhead
of the system software that invoked the signal handler. Not
all of the handler time appears in the cycle count for a mea-
sured program, because the hardware counters are stopped
partway through the handler and restarted near the end. The
intervening computation to update various counts and select



0
.9

0
.9

51

1
.0

5

1
.1 1

.E
+

0
5

1
.E

+
0

6
1

.E
+

0
7

1
.E

+
0

8

FL
O

P
s

0
.9

0
.9

51

1
.0

5

1
.1 1

.E
+

0
5

1
.E

+
0

6
1

.E
+

0
7

1
.E

+
0

8
1

.E
+

0
9

Lo
ad

s

0
0

.2
0

.4
0

.6
0

.81
1

.2
1

.4
1

.6
1

.82 1
.E

+
0

4
1

.E
+

0
5

1
.E

+
0

6
1

.E
+

0
7

1
.E

+
0

8

Le
ve

l 1
 D

at
a 

C
ac

he
 M

is
se

s

0
.9

0
.9

51

1
.0

5

1
.1 1

.E
+

0
6

1
.E

+
0

7
1

.E
+

0
8

1
.E

+
0

9
1

.E
+

1
0

C
yc

le
s

�
U

nt
ile

d
lo

op
�

T
ile

d
lo

op
�

In
di

re
ct

ad
dr

es
si

ng

F
ig

u
re

3.
A

cc
u

ra
cy

o
f

M
P

X
m

ea
su

re
m

en
ts

co
m

p
ar

ed
to

PA
P

I-
o

n
ly

m
ea

su
re

m
en

ts
as

a
fu

n
ct

io
n

o
f

th
e

n
u

m
b

er
o

f
ev

en
ts

co
u

n
te

d
.

V
al

u
es

g
re

at
er

th
an

o
n

e
in

d
ic

at
e

th
at

M
P

X
ov

er
es

ti
m

at
ed

th
e

ev
en

t
co

u
n

t;
va

lu
es

le
ss

th
an

o
n

e
in

d
ic

at
e

u
n

d
er

es
ti

m
at

io
n

.
M

ea
su

re
m

en
ts

in
th

is
fi

g
u

re
w

er
e

m
ad

e
o

n
a

si
n

g
le

-t
h

re
ad

ed
p

ro
g

ra
m

.

th
e

ne
xt

cu
rr

en
te

ve
nt

ha
pp

en
“o

ff
th

e
cl

oc
k.

”
O

fc
ou

rs
e,

th
e

to
ta

l
ov

er
he

ad
do

es
ad

d
to

th
e

w
al

l-
cl

oc
k

tim
e

of
th

e
pr

o-
gr

am
,b

ut
si

nc
e

th
e

ha
nd

le
r

ru
ns

on
ly

ab
ou

t
on

ce
ev

er
y

10
m

ill
is

ec
on

ds
,t

he
ef

fe
ct

on
ru

n
tim

e
is

sm
al

l.

7
C

on
cl

us
io

ns

Id
ea

l
ha

rd
w

ar
e

pe
rf

or
m

an
ce

co
un

te
rs

w
ou

ld
be

ab
le

to
m

ea
su

re
an

y
co

m
bi

na
tio

n
of

ev
en

ts
co

nc
ur

re
nt

ly
.H

ow
ev

er
,

si
nc

e
m

os
t

cu
rr

en
tC

PU
de

si
gn

s
la

ck
th

is
fle

xi
bi

lit
y,

m
ul

ti-
pl

ex
in

g
is

a
us

ef
ul

al
te

rn
at

iv
e.

Fo
r

co
de

re
gi

on
s

th
at

ru
n

fo
r

a
re

as
on

ab
ly

lo
ng

tim
e,

m
ul

tip
le

xi
ng

ca
n

pr
od

uc
e

ac
cu

ra
te

pe
rf

or
m

an
ce

da
ta

w
ith

m
in

im
al

ov
er

he
ad

.
T

he
so

ft
w

ar
e

de
sc

ri
be

d
in

th
is

pa
pe

r
im

pl
em

en
ts

m
ul

ti-
pl

ex
in

g
on

to
p

of
th

e
PA

PI
lib

ra
ry

,
an

d
it

su
pp

or
ts

pa
rt

ly
-

ov
er

la
pp

ed
,n

es
te

d,
an

d
m

ul
tit

hr
ea

de
d

m
ea

su
re

m
en

ts
.

Fu
-

tu
re

en
ha

nc
em

en
ts

to
th

is
so

ft
w

ar
e

m
ay

in
cl

ud
e

im
pl

e-
m

en
tin

g
m

or
e

PA
PI

fu
nc

tio
na

lit
y

(o
r

m
er

gi
ng

th
e

so
ft

-
w

ar
e

in
to

PA
PI

)
an

d
im

pr
ov

in
g

ac
cu

ra
cy

fo
r

sh
or

t
m

ea
-

su
re

m
en

t
pe

ri
od

s
an

d
m

ul
tit

hr
ea

de
d

pr
og

ra
m

s.
M

PX
is

av
ai

la
bl

e
fo

r
do

w
nl

oa
d

fr
om

h
t
t
p
:
/
/
w
w
w
.
l
l
n
l
.
g
o
v
/

C
A
S
C
/
d
o
w
n
l
o
a
d
/
d
o
w
n
l
o
a
d
_
h
o
m
e
.
h
t
m
l

.

A
ck

no
w

le
dg

m
en

ts

I
th

an
k

Ph
il

M
uc

ci
an

d
th

e
PA

PI
te

am
fo

rd
ev

el
op

in
g

th
e

so
ft

w
ar

e
on

w
hi

ch
M

PX
is

ba
se

d.
Ph

il
w

as
ve

ry
he

lp
fu

l
in

di
sc

us
si

ng
ap

pr
oa

ch
es

to
m

ul
tip

le
xi

ng
,a

ns
w

er
in

g
qu

es
-

tio
ns

,a
nd

re
sp

on
di

ng
to

pr
ob

le
m

re
po

rt
s.

D
eb

or
ah

W
al

ke
r

an
d

B
ro

ni
s

de
Su

pi
ns

ki
of

L
aw

re
nc

e
L

iv
er

m
or

e
N

at
io

na
l



0
.9

0
.9

51

1
.0

5

1
.1 1

.E
+

0
5

1
.E

+
0

6
1

.E
+

0
7

1
.E

+
0

8

FL
O

P
s

0
.9

0
.9

51

1
.0

5

1
.1 1

.E
+

0
5

1
.E

+
0

6
1

.E
+

0
7

1
.E

+
0

8
1

.E
+

0
9

Lo
ad

s

0
0

.2
0

.4
0

.6
0

.81
1

.2
1

.4
1

.6
1

.82 1
.E

+
0

4
1

.E
+

0
5

1
.E

+
0

6
1

.E
+

0
7

1
.E

+
0

8

Le
ve

l 1
 D

at
a 

C
ac

he
 M

is
se

s

0
.9

0
.9

51

1
.0

5

1
.1 1

.E
+

0
6

1
.E

+
0

7
1

.E
+

0
8

1
.E

+
0

9
1

.E
+

1
0

C
yc

le
s

�
U

nt
ile

d
lo

op
�

T
ile

d
lo

op
�

In
di

re
ct

ad
dr

es
si

ng

F
ig

u
re

4.
A

cc
u

ra
cy

o
f

M
P

X
m

ea
su

re
m

en
ts

fo
r

a
p

ro
g

ra
m

ru
n

n
in

g
fo

u
r

th
re

ad
s.

S
ee

th
e

te
xt

fo
r

a
d

is
cu

ss
io

n
o

f
th

e
cy

cl
e

co
u

n
t

d
at

a.

L
ab

or
at

or
y

m
ad

e
m

an
y

us
ef

ul
co

m
m

en
ts

on
ea

rl
y

dr
af

ts
of

th
is

pa
pe

r.
B

ro
ni

s
al

so
su

gg
es

te
d

im
pr

ov
em

en
ts

in
th

e
da

ta
co

lle
ct

io
n

te
ch

ni
qu

es
.

T
hi

s
w

or
k

w
as

pe
rf

or
m

ed
un

de
r

th
e

au
sp

ic
es

of
th

e
U

.S
.

D
ep

ar
tm

en
t

of
E

ne
rg

y
by

U
ni

ve
rs

ity
of

C
al

if
or

ni
a

L
aw

re
nc

e
L

iv
er

m
or

e
N

at
io

na
l

L
ab

or
at

or
y

un
de

r
co

nt
ra

ct
nu

m
be

rW
-7

40
5-

E
ng

-4
8.

U
C

R
L

-J
C

-1
40

18
6

R
ev

1.

R
ef

er
en

ce
s

[1
]

R
.

B
er

re
nd

or
f

an
d

H
.

Z
ie

gl
er

.
P

C
L

—
T

he
Pe

rf
or

m
an

ce
C

ou
nt

er
L

ib
ra

ry
:

A
C

om
m

on
In

te
rf

ac
e

to
A

cc
es

s
H

ar
dw

ar
e

Pe
rf

or
m

an
ce

C
ou

nt
er

s
on

M
ic

ro
pr

oc
es

so
rs

(V
er

si
on

1.
3)

.
C

en
tr

al
In

st
itu

te
fo

r
A

pp
lie

d
M

at
he

m
at

ic
s,

R
es

ea
rc

h
C

en
tr

e
Jü
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